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A series of experimental studies have been made of the fluid behaviour in a 
completely filled, precessing, right circular cylinder. The tank was spun about its axis 
of symmetry and subjected to a forced precession at various excitation frequencies 
w ,  nutation angles 0 and at various Ekman numbers. This forcing excites a subset of 
the modes, called inertia waves, that  are made possible by the Coriolis force that 
arises in a spinning environment. I n  these experiments, the fluid flow breakdown 
phenomena are investigated. Here the fluid, when forced near a resonant frequency, 
exhibits a transition to disordered or turbulent flow. This paper presents a 
categorization of some of the breakdown regimes, of which the ‘resonant collapses ’ 
(McEwan 1970) are the most catastrophic members. 

The studies reported in this paper used entirely visual observations and 
measurements. The experimental observations employed a visualization technique 
that gave no information on fluid velocities, but provided an excellent picture of the 
flow structure. Quantitative data were extracted in the form of the time for the 
breakdown to occur. The breakdown phenomena, while readily produced over a large 
region of parameter space, are complex and varied. The observations show that our 
system is extraordinarily rich, exhibiting, for example, recurrent breakdowns which 
may be explained in terms of chaotic intermittency. A detailed description of some 
of the different breakdown regimes indicates that  no single model will explain the 
behaviour throughout parameter space. This research is motivated by the instability 
problems of spinning spacecraft containing liquid fuels. 

1. Introduction 
If a rotating fluid is subjected to  forcing that is time-harmonic and of constant 

amplitude, with the excitation frequency o1 less than twice the basic spin rate 0, a 
class of waves is possible. These waves, often called inertia waves, are only possible 
in a rotating environment ; it is the Coriolis force that provides the ‘restoring force ’ 
that enables them to exist. 

Several theoretical and experimental studies have been made of the problem of 
inviscid forced oscillations in a completely filled cylindrical container. Right circular 
cylindrical boundary conditions permit a separable solution for the flow in terms of 
eigenmodes. The eigenfrequencies for the fluid normal modes were first produced by 
Lord Kelvin (1880). Further theoretical studies of inertial oscillations in a right 
circular cylinder include those of Wood (1965, 1966), Baines (1967), Gans (1970) and 
Thompson (1970). 

t Current affiliation : School of Mathematics, Oceanography Group, University of New South 
Wales, PO Box 1 ,  Kensington, NSW 2033, Australia. 
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The resonant frequencies predicted by linear inviscid theory have been shown to 
be quite accurate in a number of experiments. Fultz (1959) got excellent agreement 
with the theoretical resonant frequencies for the axially symmetric modes. His 
forcing regime consisted of a disc vibrating along the axis of a spinning cylinder. 
McEwan (1970) again found linear inviscid theory to be accurate, in predicting the 
aspect ratios for resonance of the fluid in a spinning cylinder. Forcing was by means 
of an top end-cap rotating independently at an angle to the bottom of the cylinder. 
The excitation frequency was effectively varied by changing the cylinder height. The 
modes could be clearly identified through flow visualization. 

However, experimental studies have shown that very complicated behaviour can 
arise, in both right circular cylinders and in other geometries. In  some cases, 
instabilities in thc forced fluid have degenerated into turbulence. Johnson (1967) first 
published an observation of breakdowns of inertia waves. At the same time Malkus 
(1968) was observing breakdowns in a precessing spheroid. Malkus (1968), McEwan 
(1970), Gans (1970), Scott (1975), Whiting (1981) and Stergiopoulos & Aldridge 
(1982) all reported instabilities or turbulence developing in experiments where 
contained inertia waves were forced. 

McEwan (1970) first used the term resonant collapse in a description of his detailed 
experimental work. After resonant forced flow had been established for some time, 
instabilities appeared and the motion degenerated into disorder and fine-scale 
turbulence. Timescales for instabilities to appear were of orders 10 to 100 revolutions. 
McEwan found the timescales for the collapse were quite consistent for the same 
values of the forcing parameters. The occurrence of the collapse was predictable and 
collapses occurred when a wide variety of fluid modes were forced at  resonance. 
Furthermore, McEwan noted that the disorder after the collapse waxed and waned 
and that in some cases the modal waveform ‘ re-emerged periodically ’. Later, McEwan 
(1971) was to speculate that the ‘resonant collapse ’ of inertia wave modes was caused 
by nonlinear interactions of triads of waves. This triad mechanism successfully 
modelled the degeneration of internal waves in a stratified fluid (McEwan, Mander 
& Smith 1972; McEwan 1983). 

Recently, similar phenomena have been observed in the context of studies of 
elliptical flow instabilities. When the basic streamlines are elliptical, it can be shown 
(Waleffe 1988) that there is a most unstable inertia wave mode. Experiments (Malkus 
1989) have shown that ‘resonant collapse ’ type breakdowns in these systems can 
occur. Malkus (1989) reported on elliptical flow instabilities, observed in experiments 
using a cylinder with flexible sidewalls. Since the aspect ratio of the cylinder is 
selected to be close to a resonance, a mode forms and undergoes a breakdown that 
is qualitatively very similar to the Type A and D breakdowns described in $ 4  below. 
Calculations of bounded elliptical flow instabilities had been done previously by 
Gledzer and colleagues, although these were only reported informally in Gledzer, 
Dolzhanskii & Oboukhov (1989) which described experiments where the most 
unstable modes were observed in a cylinder with elliptical cross-section after rotation 

,was abruptly stopped. The fluid was thus forced to follow elliptical streamlines. 
Previously, in Gledzer et al. (1974) a similar experiment had been performed with an 
ellipsoidal cavity. 

The linear inviscid solution outlined in $ 2  will lead one to  expect the fluid 
behaviour to consist of a set of ordered inertia wave modes. The experimental 
observations were set up with the following two aims: (i) to test the predictions of 
linear inviscid theory of the locations of low-order eigenfrequencies in the o- 
spectrum; (ii) to identify and characterize the general behaviour of the fluid over a 
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wide range of parameters. The experimental apparatus used in this work is described 
in $3. Also in that section arc details of the procedure and techniques used in the 
experiments. The experimental observations, and some discussion of the inter- 
pretation of the resulting images of the flow, are presented in 94. 

2. Linear inviscid theory 
Referring to figurc 1, consider a general fluid-filled container spinning about an 

axis through its centroid and precessing about a second axis through its centroid. 
Assume the centroid is not accelerating in inertial space, and the angle between the 
two axes is not varying with time. In  rotating fluid dynamics problems one typically 
chooses the basic rotation period of the flyid relative to inertial space as the 
timescale ; in our problem this is 52-' = I (wl k + w2 k) I-', where the symbols are as 
defined on figurc 1. Here, however, we shall choose the timescale to be w;'. In  making 
this choice, we are anticipating observing experiments from a frame of reference in 
which periods of w;' are easily counted to  provide a timescale with which various 
events can be measured. I n  fact, in the experiments to bc described later, w;' is the 
rotation period of the container relative to the observing cameras. The lengthscale 
L is equal to the container diameter. The cylinder lengthldiameter aspect ratio is h. 
We assume that the nutation angle 8 between the two axes is small, and assuming 
that the velocity scale U = O(w,LO) allows linearization of the problem. The 
dimensional pressure is pwl ULp where p is the dynamic pressure in excess of the 
centrifugal pressure, which plays no dynamical role in this problem. The non- 
dimensional excitation frequency, w ,  is defined as twice the ratio of the basic rotation 
rate SZ to  the frequency of the variation of the overall angular velocity vector in 
container coordinates, wl, giving to first order in 0 

w = 2( 1 + w2/w1). 

Adopt cylindrical polar coordinates ( r ,  4, z )  fixed in the container. The origin of the 
tank-fixed coordinates is the container centroid. The coordinates are referenced to a 
unit vector triad (@,6, i). The incompressible, inviscid linearized fluid equation of 
motion relative to axesfixed in the container is 

together with incompressibility, 
v - u  = 0. 

Equation ( la )  is the form of the momentum equation appropriate to our problem; 
steps in its derivation are outlined in Wood (1966). Its homogeneous form expresses 
the balance between inertia, Coriolis and pressure gradient forces. The inhomo- 
geneous term on the right-hand side comes from the variation of the overall 
angular velocity vector with time, due to  the precession imposed on the container. 
This is the forcing applied to the system. The boundary condition is 

u- i i  = 0, (1c) 

where A is the unit normal vector to the container surface. This allows a free-slip 
condition a t  the container wall consistent with our assumption of an inviscid flow, in 
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FIGURE 1. Schematic diagram of the apparatus. The unit vector 6 is fixed in the spinning tank; the 
unit vector K is fixed-in the turntable. The video camera is fixed in the turntable frame; its line 
of sight is normal to  k. 

k 
1 
1 
1 
2 
2 
2 
3 
3 
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1 

1 
2 
3 
1 
2 
3 
1 
2 
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on 
2.64298 
5.277 57 
7.936 21 
1.48403 
2.65374 
3.93395 
1.223 70 
1.891 34 
2.69398 

A n  

2.88221 
6.104 89 
9.276 78 
2.58361 
5.791 80 
8.96470 
2.492 74 
5.67380 
8.841 05 

k 
4 
4 
4 
5 
5 
5 
6 
6 
6 

1 

1 
2 
3 
1 
2 
3 
1 
2 
3 

wn 
1.127 69 
1.55603 
2.11440 
1.082 29 
1.37830 
1.78975 
1.057 36 
1.27306 
1.588 12 

An 
2.45622 
5.61787 
8.77909 
2.438 33 
5.587 28 
8.74335 
2.428 33 
5.56886 
8.72081 

TABLE 1. Resonant excitation frequencies o, and radial wavenumbers A, for a precessionally 
forced cylinder, h = 8 
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which the Ekman number, defined as E = v / ( w 1 L 2 ) ,  has been assumed to  be 
negligibly small. 

To find the set of wave modes in a cylindrical tank, one seeks a complementary 
function to  (1 a )  satisfying the inviscid boundary conditions. Assuming a separable 
solution of form 

a, 

u = 2 Une’t, 

P = C. Qn(r, $ 9  2) eit, 

12-1 

m 

12-1 

and eliminating the velocity components with the aid of the continuity equation, we 
get PoincarB’s equation, 

a hyperbolic p.d.e. for Iw( > 1 .  The associated boundary condition is 

U , . i  = 0. (2 6 )  

I n  general (2 a )  admits a set of plane-wave solutions, which are usually referred to 
as inertia waves. Although the full problem (2) is ill-posed, it is possible to find an 
analytic description of the flow in this case because of the particular geometry of a 
right circular cylinder. 

For brevity the index n will be used to indicate a unique combination of the spatial 
wavenumbers k, A and m. The integer k is the axial wavenumber and the integer m 
is the azimuthal wavenumber. As the radial wavenumber h is non-integer, it is 
convenient to use an integer index 1 to count the number of half-cycles in the radial 
direction. The wavenumber vector is then {k, I ,  m}’. Strictly, i t  should be noted that 
waves with the same ( k , l , m )  but negative phase speeds have a different spatial 
structure in this problem, and hence a fourth index should be used to specify the 
direction of phase propagation. However, in these experiments, only waves with a 
positive phase speed are forced. 

A solution t o  (2) by separation of variables is 

Q, = J,(2hn r )  cos (2(wz- l)-&l,[z+;h]) eim#, 

where J, is the Bessel function of the first kind, order m. A solution to Yoincard’s 
equation of this kind was first found by Kelvin (1880) and is quoted in Greenspan 
(1968). 

For precessional forcing, which requires m = 1, the radial wavenumbers are given 
by the roots of 

hJi (A)  +wJ,(A) = 0, (3) 

in order to  satisfy the radial boundary condition. In  order to satisfy the axial 
boundary condition with integer k, 

w z =  I+(+=), 2h h 
(4) 

where hkll is the lth root of (3). Resonant excitation frequencies are thus values of 
w satisfying (3) and (4). 
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The real velocity field corresponding to a single mode is given by 

dJ1(2An r )+14(2Anr)  cos[k7~(z/h+&)] cos ( $ + t )  1 - 1  w[wn dr  r 

( 5 )  1 kn 
-4(2An r )  sin [k~(z /h++)]  sin (# + t )  , h 

where (Kudlick 1966) f, is calculated by taking the projection of the forcing function 
onto the spatial structure of the nth mode and w, is a solution to (4). Further details 
of this calculation are in Manasseh (1991). 

Some of the lower-order resonant excitation frequencies are given in table 1 for the 
cylinder length/diameter ratio h of the experiment in this study. 

The spatial structure of the forced solution rotates in the tank coordinates with 
frequency -wl. It is stationary relative to the forcing function, which is fixed in the 
precessing frame of reference. In the experimental apparatus shown in figure 1,  this 
precessing frame is the turntable on which the cameras are fixed. The video camera 
in figure 1 is fixed in this precessing frame of reference, and so should see a stationary 
spatial structure corresponding to the forced solution. Similarly, a photographic 
camera is also fixed on the turntable, on the opposite side of the tank to  the video 
camera. In effect, the cameras are ‘following’ the travelling wave pattern around the 
tank. 

I n  principle all the linear inviscid modes could be excited, up to the order where 
the wavelength is comparable to  the boundary-layer thickness. However, the modes 
that can be precessionally forced have m = 1, as noted above. Furthermore, the 
forcing function, - (0-2) ( r  cos ($ + t ) )  f ,  is even in z ,  so the modes upon which it will 
project must have a vertical velocity that is also even in z ,  requiring, from (5 ) ,  an odd 
axial wavenumber k. I n  practice, the dense spacing of the resonant frequencies and 
the complex behaviour described in $4, prevent direct observation of all such modes. 
In  addition, the factor (1 - +) in ( 5 )  means that those modes with w close to 2.0 will 
be forced with only a small amplitude. The experimental apparatus could force the 
system with an positive w value of up to  2.8. Thus in the following descriptions low- 
order will be taken to mean w not close to 2.0 and less than 2.8, and with wavenumber 
vector magnitudes less than about 7. In addition expressed modes will be taken to 
mean low-order modes with m = 1 and k odd, and the term easily forced will be used 
to indicate that the magnitude of the factor ( (  1 -h)j,)/(l -w/w,) in equation (5 )  is 
large. 

3. Apparatus and experimental procedure 
3.1. Apparatus 

Full details of the experimental apparatus and procedure are in Manasseh (1991). 
The apparatus is sketched in figure 1. The Perspex tank is of internal diameter 
90 mm and internal height 120 mm. For the experiments reported here the tank was 
completely filled. The fluid used was distilled water. The tank spins in a gimbal frame 
which is in turn mounted on a turntable. Thus w1 is the spin rate of the tank in the 
gimbal frame and the precession rate w2 is the turntable speed. The nutation angle 
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8 can be varied by tilting the gimbal frame from the vertical. The tank spin axis is 
precessed at constant 8. This nutation angle is preset at a desired value and 
precession is initiated by an impulsive tilt of the gimbal frame to the preset value. 

Flow inside the tank is illuminated by a plane sheet of white light and is viewed 
by cameras with a line of sight normal to this plane. Simultaneous still photography 
is also possible. The flow field inside thc tank is visualized by the introduction of 
pearlescent flakes. It can be assumed (Savag 1985) that these highly reflective flakes 
are aligned a t  a particular inclination to  the velocity gradient in the fluid. Use of 
pearlescence should be regarded as an essentially qualitative technique, which gives 
a picture of the structure of the flow, but no information about the magnitudes of 
strain or velocity. The operating tank spin rate w1 was initially chosen to ensure that 
the Ekman number of the flow (defined as E = v / ( w l L 2 ) )  remained small of order 
lop5, without having to run the apparatus at dangerously high speeds. Thus it was 
expected that the inviscid interior model described in $2 would remain valid for these 
experiments. 

3.2. Experimental procedure 

To try to  identify the modes as reported in $4.2, the following procedure was 
adopted : (i) The nutation angle 8 was held fixed a t  5” ; (ii) o1 was set to an optimum 
value determined from tests; (iii) lwzl was increased in steps of 0.06 rad s-l up to the 
maximum value, video recordings being made a t  each stage. 

I n  most experiments the flow was observed to  break down. Times from the 
commencement of forcing to the occurrence of the various breakdown phenomena 
(describcd in $4) were recorded. After experience had been gained in initial 
experiments, timings were made during experimentation by observations of the 
video images in real time. The times recorded here were times t ,  scaled in revolutions 
of the tank relative to the cameras. A decision as to exactly when the breakdown has 
occurred is obviously subjective; in general this was defined as when the flow had 
reached its most turbulent or disordered stage. In  $4, it is noted that different modes 
undcrgo different forms of breakdown ; hence the precise definition of breakdown will 
dcpend on the mode being observed. The breakdown time measurements should 
therefore not be used for direct quantitative comparisons between the modes. 

The procedure for recording breakdown times was as follows : ( i )  With w1 = w2 = 0 
the desired nutation angle 0 is preset. (ii) Jw21 is increased to the desired value. (iii) 
w1 is increased smoothly by microcomputer control to the optimum operating value. 
(iv) Wait with 8 = 0 while the fluid spins up to  solid-body rotation. The theoretical 
spinup time is calculated as L ( ( w ,  + w , ) - b ; ) ,  where v is the kinematic viscosity, and 
provides a guide to  the minimum time to wait. Visualizations of the fluid during 
spinup also provide a guide as to  the extent of the spinup process. (v) The gimbal tilts 
smoothly to the present angle. (vi) When the breakdown time is judged to  have 
elapsed the time is recorded. Timing of subsequent secondary breakdowns is possible, 
as is the record of a ‘no breakdown’, which indicates that  the flow did not break 
down according to one of the regimes described in $4. The ‘no breakdown’ record, 
however, includes the possibility of some weak instabilities occurring over long 
timescales. (vii) w1 and Jwz( are decreased to  zero. The spindown process generates 
turbulence due to centrifugal instabilities. This behaviour is exploited to ensure that 
any structure remaining in the flow is destroyed before the next run. 
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4. Experimental observations 
4.1. Initial state 

Before the impulsive start to  precession the pearlescent image consists of a luminous 
zone surrounding the tank axis and a thin black core on the axis itself. In general the 
black core is particularly well defined. Figure 2 shows this state, before the 
commencement of forcing of the (1, 1, 1)-mode. Here B = 0 but w a t  2.643 is as close 
to the (1 ,  1 ,  1)-resonance as the accuracy of the equipment would permit. The bright 
column is defined to be the luminous zone near the tank centre, and the thin black 
core a t  the centreline of that zone. The presence of this bright column implies some 
strain in the fluid (Savag 1985). This bright column is the remnant of a luminous zone 
that could be seen shrinking onto the tank axis during the spinup process. Evidently, 
therefore, the fluid in this column is not in uniform solid-body rotation, despite its 
stable persistence after many theoretical spinup times had elapsed. Tests had 
indicated that heat from the lighting was not responsible for the bright column. A 
series of experiments, to  be reported in a later paper, was conducted using a dyeline 
technique. As part of these experiments, it was determined that the bright column 
present before the commencement of forcing did in fact correspond to a small 
departure from solid-body rotation, taking the form of a net circulation. This 
departure will be called the anomaly dri f t .  The vorticity corresponding to the largest 
measured anomaly drift is of the order of 0.01 rad s-l, and hence is of order 
scaled relative to  the basic spin w1 of about 10 rad s-l. The minimum 'anomaly 
vorticity * is achievable after spinning up for about 3 h and is of order in scaled 
form. 

The cause of the anomaly drift observed is presumed to  be the small oscillations 
in the basic spin rate w1 that could not be eliminated from the mechanical system. 
It is presumed that these oscillations, exacerbated by out-of-roundness irregularities 
in the tank wall, generate the departure from solid-body rotation. The dominant 
oscillation was itself a t  a frequency of about w1 and was about 0.5 YO of w l .  The out- 
of-roundness irregularities were of order 10-2L. Further details are in Manasseh 
(1991). The actual mechanism for generating the anomaly drift may be akin to that 
described in Suess (1971), in which boundary-layer singularities are shown to require 
an axial shear layer in the interior flow. 

from solid-body rotation should not influence 
the linear mode development and the corresponding distribution of strain in the 
fluid. It is unlikely, therefore, that the most robust breakdown regimes reported here 
(Types A, B, D, E, F), are caused or influenced by this anomaly drift that is present 
before forcing begins. However, we cannot rule out the possibility that the more 
subtle breakdown regimes may be influenced by a weak net circulation. 

Neither is the flow before the commencement of forcing immune from unsteady 
behaviour. If the system is left unforced, after a 'long' time in the order of a 
thousand revolutions unsteady motion generally becomes visible in the form of 
vertical luminous columns or striations apparently rotating with the tank. McEwan 
(1970) was likewise unable to  eliminate irregular vertical striations in his experiment, 
that were present before the commencement of forcing. 

It is possible that some of the long-timescale instabilities reported in the present 
paper are actually caused by thermal effects - heat coming from the incandescent 
light source. In  general the temperature of the Perspex outer surface of the tank will 
rise by about 1 "C to an equilibrium of about 21 "C during a typical 20 min 
experimental run. If there were a radial temperature gradient in the tank, the 

This small departure of order 
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FIGURE 2. State before the commencement of forcing, 8 = 0, w = 2.643. 

thermal wind equation would predict an axial gradient in a steady azimuthal 
circulation. If a temperature difference of 1 "C were applied across the tank radius, 
we should expect a difference in azimuthal circulation of about 4 mm s-l between the 
tank top and bottom. However, as detailed in Manasseh (1991)' the Perspex wall 
does not heat up by 1 "C instantaneously and i t  takes some time for this temperature 
difference to be conducted to a thin thermal boundary layer of about 1 mm 
thickness; typically this timescale is longer than that ,  over which the most of 
breakdowns take place. I n  any case, in the parameter range of these experiments, 
once a transient impulse or a steady forcing is applied to the system, the resulting 
behaviour dominates any irregularities previously present. 

4.2. Behaviour following forcing 

4.2.1. Identi$cation of modes predicted by linear inviscid theory 
Noticeable transient motions could be generated by impulsively tilting the tank 

spin axis with w2 = 0, through a large angle of about 10". When viewed by the camera 
as in figure 1, the core and luminous column could be seen to rock from side to  side 
and develop brief wavy modulations. The most obvious such modulation is the 
waveform of the fundamental mode (see $4.3). The apparent 'amplitude' of the half- 
angle of the rocking motion in the image is of the order of the tilt angle. As expected 
the motion dies away in the order of one spinup time, E- i /o l ,  which for the present 
set of parameters is about 30 s. 

Three parameters are readily varied in this experimental system : the nutation 
angle 8, the forcing frequency o, and, as detailed in $4.2.3, the Ekman number. 

If w is varied in small steps with 0 fixed, as described in $3.2, the fluid will display 
different modes which are excited in turn. The modal response manifests itself as a 
bright wavy axial band. A typical example is shown in figure 3, where the system is 
being forced near the resonant w for the (3,1,l)-mode. The line of sight of the 
cameras in figure 1 was in the plane of i and K; the waveform appears normal to  this 
line of sight. The waveform appears stationary when viewed from the precessing 
frame. As noted in $2 this is expected as the linear response is in phase or 7c out of 
phase with the forcing. Again as expected, +k wavelengths fit in the tank height, as 
the linear solution (5 )  is proportional to cos (kn[z /h+$]) ,  for -4 < z /h  < $. 

Recall from $3.1 that the pearlescence technique visualizes the structure of the 
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FIGURE 3. Typical modal response, 0 = lo, w = 1.260. 

flow and gives no information on the magnitudes of velocity or strain. The apparent 
‘amplitude’ of the bright waveform, then, should be governed by the spatial 
structure of a mode near resonance, not its amplitude. However, the presence of the 
bright column before the commencement of forcing casts some doubt on this simple 
interpretation of the image. The tests noted in $4.1 indicated that the anomaly drift 
was only of order scaled relative to the background vorticity due to the basic 
spin, and so should not significantly influence the development of the mode. 
However, if the magnitude of the flow due to the mode were as low in magnitude as 
the anomaly drift, might not the drift affect the visualization? One could, for 
instance, imagine a significant distortion of the fluid particle pathlines due to  an 
inertia wave mode, and the corresponding strain distribution, if an anomaly drift of 
comparable magnitude were linearly superposed. This question was not resolved 
until further experiments were tried with the dyeline technique, to be reported in a 
later paper. As a consequence of this study, which permitted a direct comparison of 
the velocities of the anomaly drift and of the flow corresponding to inertia wave 
modes, it was found that in the great majority of cases, the anomaly drift is two 
orders of magnitude less than the flow corresponding to the inertia waves. Therefore 
we can assume in general that the pearlescent pattern represents only the structure 
of the flow. 

The accuracy of the solution given in $2 was investigated by checking that the low- 
order resonant frequencies were located where predicted by linear inviscid theory, 
and by confirming that the axial wavenumber of the pattern visualized corresponded 
to that in equation ( 5 ) .  The resonances were located by visual inspection of the 
pearlescent pattern; w was varied with 8 fixed and the occurrence of any modal 
behaviour was noted at each w .  These qualitative investigations found eight out of 
14 low-order resonant frequencies to be located where predicted in the w-spectrum. 
The other six were either non-expressed, or were not seen for the reasons individually 
detailed below. Of these eight, six were expressed modes. As noted in $2, the non- 
expressed modes with even k cannot be directly forced, nevertheless two such modes 
were identified near their resonant frequencies. The reason for the appearance of the 
non-expressed modes is not clear. 

In  general, precise determination of the resonant frequency is obscured by the 
breakdown phenomena. Catastrophic breakdowns originally described by McEwan 
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(1970) as ‘resonant collapses ’ (more precise definitions will be given in $54.3 and 4.4 
below) begin to  occur for a fairly wide bandwidth on either side of the theoretical 
value. For example, for the (3,l , l)-mode, ‘resonant collapses’ can occur for 
1.2 < w < 1.3, the range depending on the nutation angle 8. From table 1 we see that 
the linear inviscid theory predicts a resonant frequency of 1.2237. In  fact, to  identify 
clearly a particular mode it was usually necessary to increase 8 to  a value which 
would result in a ‘resonant collapse ’. For these experiments the maximum forcing 
amplitude available, 8 = 5O, was used to ensure that as many modes as possible could 
be identified. Thus, in practice, checking the locations of resonant frequencies 
predicted by linear inviscid theory had to be done under conditions where the theory 
would ultimately break down. 

Some low-order modes within the w-range of the experimental equipment are: 

(5,2, l),  (5,3, I) ,  (6,2,1) and (6,3,1). The (2,2,1)- and (3,3,l)-modes are so close to  the 
(1, 1, 1)-mode in the w-spectrum that they could not be observed; any attempts to  
force them resulted in behaviour dominated by ‘resonant collapse ’ of the (1, 1 , l ) -  
mode. The (9,3,l)-mode was identified within the breakdown range of the (3,1,1)- 
mode. The (6,2,l)-mode, being non-expressed, was not identified. I n  addition to  the 
(1,1,1)- and (3,1,1)-modes described in detail below, mode forms with the correct 
axial wavenumber, at predicted frequencies, were identified for the (3,2,1)-, (5,2,1)- 
and (5,3,l)-modes, as well as for the (4,1,1)- and (4,2,l)-modes, despite these last 
two being non-expressed. The behaviour noted near the (4,1,l)-mode resonant 
frequency was particularly complicated, with evidence of a secondary mode often 
present. 

However, a t  the (2,1,l)-frequency the mode form visible seems to have 
approximately six axial half-wavelengths. The (5,1,l)-mode form was hard to 
identify unambiguously before its breakdown occurred. The (6,3,l)-mode was not 
observed. Clear characteristics can be observed along with the (4,2,l)-mode, with a 
conical half-angle of about 40°, the expected angle for the characteristics of the 
hyperbolic operator in (2). 

Some form of flow instability or breakdown was observed within the timescale of 
several hundred revolutions of a typical experimental run, for all the modes 
identified above. However, particularly dramatic ‘resonant collapses ’, involving 
transitions to turbulent flow or fine lengthscale disorder, were observed near the 
(1,1, l ) ,  (2,1, l), (3,1, l), (4,1, l), (5,1,1) and (5,2,1) resonant frequencies. 

The ‘low-order expressed modes’ as defined in $2 are those modes that one might 
reasonably expect to  see evidence of with the apparatus used in these experiments. 
In summary, patterns consistent with each of the low-order expressed modes were 
identified a t  approximately the frequencies predicted by linear inviscid theory. The 
one exception in these pearlescence observations was the (3,3,l)-mode ; its resonance 
is so close to that of the (1 , 1, 1)-mode that no evidence of it was observed. The degree 
of approximation in identifying the locations of the frequencies is governed by the 
breakdown behaviour near the resonant peak. If a general statement is to be made 
about the accuracy of the frequency locations, i t  is that the resonances appear to be 
within & 10 % of the values predicted by linear inviscid theory. 

4.2.2. Breakdown of the modes 

The behaviour of the system, as revealed by these visualizations, is dominated by 
various breakdown phenomena. The flow, after displaying its modal waveform with 
the axial wavenumber as predicted by linear theory, becomes unstable and there is 

(1,1, I ) ,  (2,1,  I),  (2,2, 11, (3,19 11, (3,2,1),  (3,3, I ) ,  (4,1> 11, (4929 11, (4,3,1)> (591, I), 
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a transition to turbulence or disorder. For strong forcing, say a tilt of 8 = 3 O ,  the 
breakdown produces quite fine-grain turbulence, with an isotropic eddy size in the 
order of a tenth of the tank radius. Weak forcing produces flows best described as 
disordered rather than turbulent. 

If w is varied in small steps with 8 fixed at ,  say, 5” (a ‘large’ angle in these 
experiments) the fluid displays the different low-order modes. which are excited in 
turn, then are seen to undergo a breakdown. As w passes out of range of a particular 
mode the fluid recovers an ordered flow until the range of the next mode is reached. 
If precession a t  a resonant frequency is started impulsively, as described in $3.2, the 
core and luminous column immediately begin to develop the modal structure. This 
structure will break down in the majority of cases, either with a catastrophic 
‘resonant collapse ’ or with some other forms of breakdown to be discussed shortly. 
It is interesting to note that the breakdown range of a particular mode is not centred 
on the resonant frequency of the mode. 

When the (1, 1, 1)-mode is forced the breakdown is observed to occur for all but the 
smallest nutation angles, say 8 of order #. Apparently stable linear modeforms a t  
larger 8 of order 1’ have been observed for some higher-order modes, for example the 
(5,3,1)- and (9,3,l)-modes. However, the experiments were not sufficiently 
exhaustive to  rule out the possibility of instabilities affecting these modes on a long 
timescale of order several hundred revolutions. The (9,3,l)-mode may be dominated 
in certain regions of parameter space by the breakdown of the (3,l’ l)-mode, which 
has a resonant frequency in the same narrow w-bandwidth. In  general, it appears 
that  if a mode has a resonant w such that it is low-order, it will exhibit some form 
of breakdown. 

Different breakdown regimes have been identified. These are consistent and 
reproducible forms of flow behaviour leading up to  and during the breakdown. 
Different regimes have been observed for each different mode, and furthermore 
different regimes can be observed when a particular mode is excited in different 
regions of parameter space. The behaviour after breakdown need not be completely 
disordered for all time. Even if forcing is maintained, the disorder may recover some 
modal structure. The disorder may wax and wane or, in many regions of parameter 
space, the flow after an initial breakdown becomes quite ordered and then undergoes 
further recurring breakdowns, the flow regaining some order in between breakdowns. 
Similar behaviour, described as ‘periodic’, was noted in McEwan (1970), and in an 
experiment reported by Scott (1975). 

The occurrence of a breakdown does not depend on the way the precessional 
excitation is set up. Either an impulsive increase in 8 from zero to a preset value, or 
a spinup of either w1 or w2 to a resonant combination, will cause a breakdown. It is 
possible that near the boundaries of the breakdown regimes, details of the breakdown 
process, or the type of breakdown regime observed, will be sensitive to initial 
conditions. However, there is not enough systematic data to be sure. Attempts were 
made to create a different type of breakdown by impulsively starting precession at  
different stages of the spinup process described in $3.2, for example a 20% change 
in the time before or after the luminous zone had reached its minimum diameter. 
However, for all such tests the qualitative behaviour remained essentially the same. 
The time from the commencement of forcing to the breakdown, when measured non- 
dimensionally in terms of the number of tank revolutions, is quite repeatable. This 
repeatability is despite variations in initial conditions. Following the measurement 
techniques described in $3.2, such timings were used to extract quantitative data on 
the influence of various parameters on the breakdown phenomena. 
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FIQURE 4. Breakdown times near the (1,  1 , l )  mode resonance, B = 5O,w = 2.640. 

It became clear during the initial experiments reported above, that  the system 
being studied was extraordinarily rich in complex phenomena. A detailed mapping 
of even two dimensions of the w-8-E parameter space, listing breakdown regimes, 
would have been a formidable and time-consuming task. Given this situation, it was 
decided that only two modes were to be selected for study in detail : the fundamental 
or ( l , l , l ) - m o d e  and the (3,1,l)-mode. The ( l , l , l ) -mode  is an obvious choice as it is 
the lowest-order mode that can be forced in these experiments. The (3,1,l)-mode was 
selected as it is easily forced and its low number of axial wavelengths allows easy 
visualization of phenomena contributing to  the breakdown. For these two modes it 
was interesting to investigate in detail a narrow bandwidth about the resonant 
frequency. Breakdown times were measured as a function of the parameters o, 8 and 
E for these small slices of parameter space. The interest was in determining the 
details of the breakdown behaviour where three modes were closely spaced in the o- 
spectrum, namely the (1,1,1)-, (2,2,1)- and (3,3,l)-modes in the one case, and the 
(3,1,1)-, (6,2,1)- and (9,3,l)-modes in the other. Refer to table 1 to see the resonant 
w for these modes. For these two modes, approximate limits to 6' were found within 
which a breakdown did not occur in one of the specific regimes detailed shortly. 

4.2.3. Effect of boundary layers on the breakdown 

The Ekman layer thickness scales non-dimensionally as Ea (Greenspan 1968). 
Experiments were conducted to determine the influence of boundary-layer thickness 
on the flow breakdown behaviour. It was found that the breakdown times are 
insensitive to Eat from which i t  can be inferred that variations in boundary-layer 
thickness do not influence the breakdown behaviour. For the value of 8 = 5" used in 
these experiments the form of the breakdown was also independent of E - it  was the 
Type A breakdown detailed in $4.3.2. One cannot of course assume that viscosity is 
unimportant to the breakdown processes ; some energy dissipation may result, for 
example, in the destabilizing wave-mean flow interactions discussed in $ 5.2. 

For these experiments in which the Ekman number was varied, E was defined as 
v / ( ( w 1 + w 2 ) L 2 ) .  Use of this standard definition ensured that the effect of the 
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(4 (4 (f) 
FIGURE 5(a-f) .  For caption see facing page. 

precession on the boundary-layer thickness was included, an important factor in 
retrograde precession when w 2  < 0. The Ekman layer thickness Ei  is increased simply 
by operating at a lower w1 and ensuring that w2 is scaled to maintain a resonant w .  
Figure 4 shows the variation of the breakdown time t, with Ef for breakdowns of the 
(1, 1, 1)-mode. Checks were also made for other modes and similar results were 
obtained. Note that unlike following plots describing the effect of parameters 8 and 
w ,  t ,  has not been plotted logarithmically. The vertical bars indicate 90 YO statistical 
confidence limits. Repeated measurements, typically 10, were made both to 
determine the magnitude of any random errors in measurement, and to aid in the 
selection of an operating w1 with a minimum in variance due to error in timing the 
breakdowns. The chosen operating w1 for the rest of the experimental study was 
100 r.p.m. (10.47 rad s-l). Here this corresponds to Ef = 3.0 x the lowest Ef 
plotted represents 13.4 rad s-l, and the highest represents 2.36 rad s-'. A doubling of 
the viscous boundary layer produces only a marginal increase in breakdown time, 
while a reduction in boundary-layer thickness from the operating value seems to 
have little effect. 
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0’) (k) 
FIGURE 5. Type A breakdown, 6 = 3”, w = 2.720; (a) to ( k )  were taken at 0.3 s 

(0.5 revolution) intervals. 

4.3. Breakdowns of the (1,  1 ,  1)-mode 

4.3.1. General 
This lowest-order or fundamental mode is the most easily forced, and exhibits the 

most dramatic breakdown behaviour. By the same token, it is harder to distinguish 
subtle variations in the behaviour of this mode, so i t  is in a sense less interesting than 
the (3,1,l)-mode described below. Effects of variations in both (3 and w were 
investigated. Precessional forcing was started by an impulsive tilt in the spin axis. 

I n  the descriptions below of the pearlescent visualizations of both the (1, 1,l)- and 
(3,1,l)-mode, the term spatial extent will be used to describe the apparent 
‘amplitude’ of the bright pattern in the image of the tank. It should be remembered 
that in the majority of cases this has no correlation with the actual amplitude of the 
mode. The oscillatory flow due to the inertia waves is of sufficient magnitude to  
overwhelm the anomaly drift. As a consequence we see only the strain distribution 
corresponding to the inertia waves, which gives us a pattern independent of their 
amplitude. 

Immediately on the impulsive tilt in spin axis, the core appears to  incline rapidly, 
until it  appears as almost a diagonal of the tank when viewed side-on. Figure 5 ( a )  
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FIGURE 6. Sketch of stage (iii) in the Type A breakdown process. Solid lines indicate a temporally 
evolving but not oscillatory feature. Hatching indicates a luminous zone in the reflected pattern. 

shows this case. This is interpreted as the rapid development of a modal flow with an 
axial structure that is a half sine wave, cos ( x [ z / h + $ ] ) ,  for -a < z / h  < $ as expected 
from ( 5 ) .  

Three major breakdown regimes are described below for this mode. The 
observations are related to the dynamic behaviour best illustrated by the playback 
of video recordings ; however here they have been illustrated with still photographs. 
An attempt has been made to depict one stage in most of the breakdown processes 
with a sketch (figures 6 and 8).  Although inevitably impressionistic, the sketches 
may compensate in part for the lack of a video playback. Refer to figure 10 to see the 
distribution of breakdown types in the 0-w parameter space. Numerals below 
symbols indicate the number of multiple breakdowns (of the Type C, to be described 
shortly) recorded there. 

4.3.2. Type A breakdown 
This predominant breakdown regime, characterized by a rapid transition to fine- 

scale turbulence, occurs for all but the weakest forcing cases. Figure 5 (a-k) shows the 
behaviour up to this type of breakdown. All the photographic exposures presented 
in this study took of a second. Here the exposures were made at  0.3s  or 0.5 
revolution intervals. The frequency was w = 2.72 and the nutation angle 0 = 3". 

Figure 5 ( a )  is a photograph taken about 3 revolutions after the impulsive tilt. 
(i) The core waveform grows very rapidly in spatial extent and reaches a 

maximum in a few revolutions. Figure 5 ( d )  shows the waveform a t  its maximum just 
prior to breakdown. 

(ii) Interesting behaviour can be observed where the cylinder axis intersects the 
waveform, i.e. a t  the inflexion point of the sinusoidal wave. I n  some cases the 
luminous zone here appears to split into two filaments and then rejoin. Figures 5 ( b )  
and 5 ( c )  show this occurring. 

(iii) The region of the core around the inflexion point develops a modulation ; a 
single superimposed wave of small wavelength. Just  before the transition to 
turbulence, this modulated region develops to quite large local spatial extent. This 
dynamic behaviour is clearer on video than in still photographs; it occurs a t  the 
stages of figures 5 ( f )  and 5(g) ,  and is illustrated with a sketch (figure 6). 

(iv) Fluctuations appear at the corners of the cylindrical section being viewed, a t  
about the stage of figure 5(g) ,  but almost instantly turbulence fills the whole tank. 
Within a couple of revolutions this turbulence has its smallest lengthscales, as shown 
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(g) (h)  
FIGURE 7. (u-f) Type B breakdown, 8 = 0.4O,w = 2.635, taken at  irregular intervals due to the 
slower evolution of this regime. (9, h)  Type C breakdown, 8 = 0.4", o = 2.635; (9) and (h)  follow ( a )  
to  (f) in time; however, they were taken about a minute (100 revolutions) after (f). 
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FIQURE 8. Sketch of stage (ii) in the Type B breakdown process. Solid lines indicate 8 temporally 
evolving but not oscillatory feature. Dashed lines indicate an oscillatory feature. Hatching 
indicates a luminous zone in the reflected pattern. 

in figure 5 ( k ) .  This climax to the breakdown process occurs at about 10 revolutions 
after the impulsive tilt. The breakdown time is judged to have elapsed by this point. 

(v) Immediately on breakdown the highly turbulent flow shows a strong 
circulation when viewed in the precessing frame. This flow is counterclockwise on 
figure 5 .  

(vi) After a few more revolutions this circulation stops. The fluid remains 
turbulent with small isotropic lengthscales but there appears to be no bulk motion 
at all in the precessing frame. The circulation then re-establishes itself but in the 
reverse sense, i.e. clockwise on figure 5.  

(vii) The circulation appears to cease. The annular region begins to pulsate with 
a frequency in the order of wl. This may happen before or during the circulation 
reversal. The turbulent zone bounded by the annulus inner radius forms an inclined 
core along the pattern of the original waveform. The pulsations wax and wane but 
the flow remains turbulent as long as the forcing is maintained. 

The timescales quoted above are typical of Type A breakdowns occurring at 0 = 
3" or above. However, breakdowns best described as Type A can also occur over 
longer timescales, of about 50 revolutions, for 8 = 1' and w < 2.62. 

4.3.3. Type B breakdown 

This occurs for weak forcing cases, does not result in fine-scale turbulence, and 
appears to involve a protracted interaction with another mode. A typical Type B 
breakdown is shown in figures 7 (a)-7 (f), which were not taken at  regular intervals 
owing to the much slower evolution of this regime. The frequency was w = 2.635, 
which is just below the resonance, and the nutation angle 8 = 0.4". 

(i) As seen in figure 7 ( a ) ,  the growth in spatial extent of the waveform is slower 
and the core does not incline to the extent that it does for a.Type A breakdown. 

(ii) Some fluctuations can be discerned in the background body of the fluid. 
Rapidly fluctuating bright patches appear on either side of the inclined core, as in 
figure 7 (b ) .  This stage is illustrated with a sketch (figure 8). 

(iii) The patches become better defined and some axial modality can be made out ; 
approximately 1.5 wavelengths can be discerned during videotape playback. 

(iv) Fine-scale disorder appears in the flow and the core waveform is obliterated. 
This occurs at about 30-40 revolutions after the impulsive tilt, in between figures 
7 ( d )  and 7(e ) .  
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(v) The fine scales in the disorder disappear in a few revolutions and the resulting 
flow is strongly columnar and inclined. Rapidly fluctuating inclined columns 
dominate the flow ; however, it is hard to estimate the frequency of the fluctuations. 
In  certain regions of parameter space, disorder never vanishes completely, but in 
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FIGURE 11. Breakdown times t ,  (in revolutions) near the ( 1 .  1. 1)-mode resonance, w = 2.640, E = 
9 x Vertical bars represent 90 % statistical confidence limits. More than one breakdown type 
is included in this data .  

others the flow becomes calm, as in figure 7 (f ), and one or more Type C breakdowns 
(detailed shortly) may follow. 

In  some other regions of parameter space. Type B breakdowns can also occur over 
longer timescales than those quoted here. For example at  w = 2.54, which is further 
below the (1,1,1) mode resonance than the experiment in figure 7 ,  and a t  0 = lo, 
Type B breakdowns occur a t  about 100 revolutions. 

Figures 9 ( a )  and 9 (b )  present data representing a Type B breakdown. Here the 
time dependence of the flow has been measured from the intensity of the light 
reflected by the pearlescent flakes. They were obtained by image processing of the 
video pictures, after a careful series of tests to ensure that any peaks in the spectra 
were due to features in the flow and not to spurious reflections of irregularities in the 
tank wall. The segmented spectra, normalized to the square of the average intensity 
recorded over the whole time series, show that the periodicities in the flow develop 
after the Type B breakdown. Recall that from the frame of reference in which the 
recordings were made, we should expect no time variation if the behaviour is 
consistent with a steady linear forced response. The peaks in the spectra give a 
quantification of the frequency of the ‘rapidly fluctuating inclined columns ’ noted 
under point (v) above. 

4.3.4. Type C breakdown 

Type C breakdowns generally occur after a previous breakdown. Only one instance 
was noted where i t  occurred as the first breakdown. It is poorly defined; here it is 
illustrated with figures 7 (9)  and 7 (h ) .  It begins with increasing disorder in the corners 
of the cylindrical section in view. Disorder spreads throughout the tank, disrupting 
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FIGURE 12. Breakdown times t ,  (in revolutions) near the (1: 1 ,  1)-mode resonance, E = 9 x 
Vertical dashed lines indicate the location of low-order mode resonances, vertical dotted lines 
connect multiple breakdowns. (a) 0 = 1"; *, Type A ;  x , Type B; 0, long-timescale instabilities. 
(15) 0 = 0.4" and 0 = 3"; *, Type A ;  x ,  Type B; +, Type C. 
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(€!) 
FIQURE 13 (ug). Type D breakdown, 0 = 3O, w = 1.290, not taken at regular intervals. 

the columnar pattern established after the previous breakdown. I n  some cases the 
disorder wanes and the columnar pattern is re-established, leading to  a further 
breakdown. Up to eight such consecutive Type C breakdowns have been observed ; 
under these circumstances i t  appeared as though recurrent breakdowns would 
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FIGURE 14. Sketch of stage (iii) in the Type D breakdown process. Solid lines indicate a temporally 
evolving but not oscillatory feature. Hatching indicates a luminous zone in the reflected pattern. 
Broken curved lines indicate turbulent features. 

continue indefinitely, But in other cases the flow remains disordered after the first 
Type C breakdown. 

4.3.5. Variatiom in the 8-w parameter space 
Figure 10 shows the distribution of breakdown types in 0-w parameter space. 

Quantitative data for the time for the breakdowns to occur were also taken. Figure 
11 summarizes the results for variations in 8, the tests being done at the (1,1,l)-mode 
resonant frequency. In figure 11 the data includes timings of different breakdown 
regimes. The breakdown timings were particularly consistent for this strong forcing 
case, so 90 YO statistical confidence intervals have been employed. (However, there 
are systematic shifts in the breakdown times between different sets of experiments. 
Evidence of this is the difference in the breakdown times for 8 = 3" presented in 
figure 11 and figure 12 (b). The differences are consistent with an unavoidable change 
in the zero-setting of the spin and precession axes made between these sets of 
experiments, that altered the way the forced flow was set up.) The limiting angle for 
8 is about 0.3", for our operating E value of 9 x and some form of breakdown 
was observed for all 8 2 0.3'. 

Figure 12 ( a )  shows the results for 0 a lo over a wide bandwidth in the w-spectrum. 
Different breakdown regimes are indicated, with * for Type A and x for Type B. The 
0 symbols indicate a weak instability, characterized by general disorder with long 
lengthscales, occurring over a long timescale. Vertical dotted lines connect multiple 
breakdowns. The time to each breakdown is measured from the start, t = 0. Figure 
12(6) shows the results for a smaller slice of the w-spectrum where three modes are 
closely spaced. Here Type C breakdowns ere denoted by + . Resonant w for the three 
modes of interest are marked. 

4.4. Breakdowns of the (3,1,l)-mode 
4.4.1. General 

Here a two-parameter space was again investigated: the effect of variations in 8 
and w .  Refer to the 0- parameter space regime diagram (figure 22). As with the (1, 
1, 1)-mode, breakdown times vary greatly with the forcing parameter 0; however, 
more interesting differences in qualitative behaviour were observed as w was varied. 
As before precessional forcing was started by an impulsive tilt in the spin axis. 

10 FL.M 243 
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FIGURE 15 (a-h). Type E breakdown, 0 = 3', w = 1.200, not taken at  regular intervals. 

Perhaps because this mode is less easily forced than the (1, 1, 1)-mode, more 
complicated types of behaviour can be distinguished. Four major breakdown regimes 
are described below. Some parallels can be drawn with equivalent breakdown 
regimes of the (1, 1, 1)-mode. However, a different set of letters (D-G) is used here for 
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FIGURE 16. Sketch of stage (iv) in the Type E breakdown process. Solid lines indicate a temporally 
evolving but not oscillatory feature. Broken curved lines indicate turbulent features. 

the breakdown types, to emphasize. that behaviour regimes common to  several 
modes may not exist. The quantitative measurements summarized in figures 20-22 
will make clearer where in parameter space the different regimes occur for this mode. 
As with the Type A and B breakdowns of the (1, 1, 1)-mode, sketches (figures 14, 16, 
18 and 19) have been made of a stage in each of the (3,1,l)-mode regimes detailed 
below. 

4.4.2. Type D breakdown 
This breakdown regime occurs in strong forcing cases and has the fastest 

breakdown times. Figures 13(a)-13 (g) show its development. They were not taken a t  
exactly spaced intervals but were cued off the video images in an attempt to 
illustrate important stages in the breakdown process. The frequency was w = 1.29 
and the nutation angle 19 = 3'. 

(i) The spatial extent of both the core and the luminous zone around it grow 
without waveform distortion (figure 13 a, b). 

(ii) At about five revolutions after the impulsive tilt, unsteadiness appears in the 
core (figure 13c); sometimes the luminous zone develops modulations of smaller 
wavelength. 

(iii) Turbulence begins, apparently originating a t  each inflexion point of the 
sinusoidal wave. Recall that  interesting phenomena were also noted at the inflexion 
point of the ( l , l , l ) -mode waveform. On close inspection of the region near the 
central inflexion point, the actual onset of turdulence can be discerned : the luminous 
zone appears to split into two filaments. In  this sequence of photographs this has 
already occurred in figure 13(a). This stage is illustrated with a sketch (figure 14). 

(iv) Fluctuations of higher frequencies rapidly dominate the general flow ; 
turbulence spreads quickly outwards to the cylinder walls (figure 13 d-f). 

(v )  Turbulence with small lengthscales is produced, as shown in figure 13(f). This 
is the climax of the breakdown process and the breakdown time is judged to be 
elapsed by this point. For strong forcing, this occurs a t  about 10 to 20 revolutions 
after the 'impulsive tilt. 

(vi) The turbulence then becomes less he-grain and by about 30 revolutions some 
order can once more be discerned in the flow. The modal waveform reappears 
superimposed on the general disorder, as in figure 13(g). However, the flow never 
completely recovers the ordered waveform present before breakdown. 

10-2 
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(el (f) 
FIGURE 17 (a-f). For caption see facing page. 

4.4.3. Type E breakdown 

This regime occurs for strong forcing nearer to the (3,1,1)-mode frequency than to  
the (6,2,1)-mode frequency. It is characterized by turbulence 'lingering' in the core 
region before spreading throughout the tank. Figures 15 (a)-15 (h)  illustrate the 
process, once again not taken a t  regular intervals. Here they cover about 50 s. The 
frequency was o = 1.20 and the nutation angle 0 = 3". 

(i) The core spatial extent grows without waveform distortion, a stage already 
completed by figure 15(a).  

(ii) At about five revolutions the spatial extent growth appears to halt; the 
luminous zone becomes concentrated into patches on the convex sides of the wave 
crests. 

(iii) Turbulence begins, again apparently originating at  the waveform inflexion 
points (figure 15b).  

(iv) In figure 15(c-e) the core becomes disordered, and its spatial extent shrinks 
until the original waveform can no longer be discerned. Occasionally, higher axial 
wavenumbers can be made out. Although not captured in this sequence of 
photographs, the original waveform generally reappears and grows in spatial extent 
again. This stage is illustrated with a sketch (figure 16). A few cycles of this process 
can be made out over the next few revolutions, as: 
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0') (k) 
FIQURE 17. (a-f) Type F breakdown, 0 = lo, w = 1.260, taken at approximately 2 s intervals. (g-k) 
Type G breakdown, 0 = l " , w  = 1.260. (g-k) follow (a- f )  in time; however, they were not taken at 
regular intervals. 

(v) the disordered core gradually enlarges until it  reaches the cylinder walls (figure 
15f-h). As it nears the walls, high-frequency fluctuations can be noted in an annulus 
between the core and the walls. 

(vi) The breakdown reaches its climax as the turbulence attains its smallest eddy 
size, when the breakdown time is judged to have elapsed. This occurs at about 30 
revolutions, and in this sequence is just after figure 15(h) .  As in the Type D 
breakdown, a modal ordering of the flow is soon recovered as the turbulence 
lengthscales become larger. However, the subsequent flow is never free of disorder. 

4.4.4. Type F breakdown 
This regime occurs for weaker forcing nearer to the (3,1,l)-mode frequency than 

to the (6,2,1)-mode frequency. Figures 17 (a)-17 (f) show the development of this 
type of breakdown. They were taken at  approximately 2 s intervals. The frequency 
was w = 1.260 and the nutation angle 8 = lo. 

(i) In figure 17 (a), the core and luminous zone spatial extent grow slowly and not 
necessarily monotonically. Sometimes the spatial extent shrinks and then grows 
again. 
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FIGURE 18. Sketch of stage (ii) in the Type F breakdown process. Solid lines indicate a temporally 
evolving but not oscillatory feature. Dashed lines indicate an oscillatory feature. Hatching 
indicates a luminous zone in the reflected pattern. 

(ii) Luminous regions extend from the convex sides of the wave crests into the 
body of the fluid. This stage falls in between figures 17 ( a )  and 17 ( b ) ,  and is illustrated 
with a sketch (figure 18).  

(iii) Instability in the core appears a t  about 30 revolutions, a t  the waveform 
inflexion points. 

(iv) Oscillating bright patches appear, extending from the core into the fluid body. 
This stage is almost completed in figure 17 ( b ) .  

(v) In figures 17 (c) and 17 ( d )  the core waveform becomes distorted, and almost 
simultaneously disorder rapidly fills the whole tank. At this point the breakdown 
time is judged to have elapsed. 

(vi) The flow becomes more ordered though still unsteady : a wavy bright column 
can be seen, apparently rotating with the tank, as shown in figure. 17 (f ). The number 
of axial wavelengths is clearly 1.5 at times, and approximately 3 a t  others. In  certain 
regions of the forcing frequency spectrum a series of Type G breakdowns (detailed 
below) will follow. 

4.4.5. Type G breakdown 

This occurs as a secondary breakdown after a Type F breakdown, or occasionally 
by itself a t  a frequency nearer the ( 6 , 2 , 1 ) -  or (9,3,l)-mode frequencies. Here this 
type of breakdown is illustrated by figures 17 (9)-17 (k) which are part of the same 
sequence as figures 17 (a)-17 (f). However, figures 17 (9)-17 ( k )  were not taken a t  
regular intervals; they are spaced out over about 2 minutes. 

(i) For a period of time corresponding to about 100 revolutions, the flow is 
basically ordered, consisting of a wavy bright column as above. Gradually, 
fluctuations in brightness can be discerned along the vertical cylinder walls, as in 
figure 17 (g), confined to an annular region of width less than about !jr. This behaviour 
appears very similar to a Type B breakdown of the (1 ,  1 , 1)-mode. 

(ii) The fluctuations in the annular region become better defined until some axial 
modality can be made out. There appear to  be either 3 axial wavelengths or 
superimposed waveforms of 1.5 wavelengths. This occurs between figures 17 (h )  and 
17 (i), and is illustrated with a sketch (figure 19). 

(iii) In  figure 17 (i) sharper but unsteady patterns, apparently consisting of 
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FIGURE 19. Sketch of stage (ii) in the Type G breakdown process. Solid lines indicate a temporally 
evolving but not oscillatory feature. Dashed lines indicate an oscillatory feature. Hatching 
indicates a luminous zone in the reflected pattern. 

intertwined waveforms of 1.5 axial wavelengths, grow inwards, destabilizing the 
core. The whole flow becomes disordered, at  about 200 to 300 revolutions after the 
initial breakdown. 

(iv) Turbulent eddies are never created. The patterns remain strongly columnar 
and soon a state similar to the one before breakdown is recovered, as in figure 

(v) The breakdown process will repeat itself. Times were recorded for up to seven 
Type G breakdowns in sequence ; a period in the order of 100 revolutions separates 
each breakdown. The beginnings of a second Type G breakdown is shown in figure 
17 (k). 

In some cases, the later breakdowns were less distinct, and eventually appeared to 
be subsumed in the general disorder. However, in other cases this rough cycling was 
sustained as if it would continue indefinitely, a series of chaotic bursts being 
separated by long periods of order. It may have been that this sustained 
intermittency was systematically located in certain regions of parameter space, and 
that the cases where recurring breakdowns died out were located in others. 
Alternatively, random experimental inaccuracies may have engendered the demise 
of sustained intermittency in some of the runs. It may be that a more accurate 
apparatus with temperature control is required for a proper investigation of this 
phenomenon. 

1 7 ( j ) .  

4.4.6. Variations in the 6- parameter space 
Figure 20 summarizes the results of variations in the forcing parameter 6. Some 

regimes shown on this figure were not described in detail above but will be noted 
below. The tests were done near the (3,l,l)-mode resonant frequency. The limiting 
value in 6 is about 0.8", a t  our operating value of E = 9.0 x lo-'. For 6 less than 0.8" 
breakdowns of the types detailed above were not noted and the modal waveform can 
still be observed. Its spatial extent is small and does not appear to change. Clearly 
Type D breakdowns are favoured when the forcing is strongest, and Type F 
breakdowns a t  weak forcing. However, there is overlap of the breakdown regimes. As 
noted in 84.2.2, it is not clear whether small variations in the initial conditions or 
different running conditions cause one particular regime to be selected over another 
for an otherwise identical experimental run. 
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FIQURE 20. Breakdown times t,  (in revolutions) near the (3,1,l)-mode resonance, w = 1.224, 
E = 9 x  lo+: a, Type D;  0, Type E;  *, Type F; A, Type F1; V, Type €72; x ,  Type G. 

Figure 21 (a-c) summarizes the results of variations in the forcing frequency w ,  for 
the narrow bandwidth of interest around the linear resonant frequency. Where 0 
symbols occur on the abscissa, only long-timescale instabilities (of the form described 
in $4.1) occurring after about 1000 revolutions were noted. Once again different 
breakdown regimes are evident : Type F breakdowns are prevalent for weaker forcing 
cases and Type D breakdowns for stronger forcing cases. It is important to  note that 
while a pure Type D breakdown is readily distinguished from, say, a Type E 
breakdown, intermediate breakdown types do exist. For example, results for 8 = 1" 
show a regime, Type F1, that  has aspects of Type E behaviour. The results for 0 = 
1.5" show a regime, Type F2, with aspects of Type D behaviour. Some intermediate 
breakdown types appear to  be restricted to  small neighbouring regions of parameter 
space and may represent distinct sub-regimes. For example, only Type F and F2 
breakdowns occurred in the experiments a t  8 = 1" and w = 1.2236 presented in figure 
20, whereas slightly further away in frequency, Type F1 breakdowns were found, as 
shown on figure 21(a), which represents the results of an independent set of 
experiments. It should be emphasized that apparently scattered points in the sort of 
data presented here do represent qualitatively different flows. 

When the system is forced near to the resonant frequency of the (6,2,l)-mode, 
which is non-expressed, the mode visible is still the (3 , l , l ) -mode,  which is dominant 
over this o-bandwidth. Note that the bandwidths where a particular breakdown 
regime occurs are not centred on the (3,1,l)-mode resonance. I n  figure 22 the 
occurrence of each (3,1,l)-mode breakdown type is summarized in a regime diagram 
in 0-w parameter space. Numerals below symbols indicate the number of multiple 
(Type G) breakdowns recorded here. 



4 

3 

U - 
$ 2  - 

1 

0 

U 

0 
u 

&i 
0 - 

Breakdown of inertia waves in a precessing cylinder 

(3,191) (6,231) (9,391) 
I I 1  I I I 1  1 1  

I 
I 
I (4 

I I 
I I 
I I 
I I 
I I 
I I 

I 
I I 
I I 
I I 
I I 
I I 
I I 

I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I !  I I 1 1  

1.20 1.22 1.24 1.26 1.28 1.30 
w ,  

I 
I 
I (b) 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I " I !  I I 1 1  

I I 
I I 

I 

I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

29 1 

1.20 ' 1.22 1.24 1.26 1.28 1.30 

FIQURE 21 (a-b). For caption see facing page. 
0 



292 

4 -  

3 -  

0 * 

$ 2 -  
4 

1 -  

0 

R. Manasseh 

I I I  I I I 1  I 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

I I I 
I I I 
I I I 
I I I 
I 1 I 
I I I 
I I I 
I I I 
I I l 

I I I 
I I I 

(4 

- 

I I I I I I I I I - 
~ ~ 0 0 ~ 0 ~ 0 0  ~ 0 ~ 0 ~ ~ ~  I I I 

I 

I 0 0  0 0 0  0 1  
01 

I . I  I 0  I 
I 1 .  
I ..I=. ..==:=I. 
I I 
I I I 
I I I - 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

I I !  I I I 1  

1.20 1.22 1.24 1.26 1.28 1.30 

I [  

5. Discussion and conclusions 
5.1. Summary of the experimental observations 

This paper describes the first detailed observations of the fluid motion within a 
precessing cylinder. We identified patterns consistent with the presence of those low- 
order modes that one might reasonably expect to see evidence of with the apparatus 
used in these experiments, a t  approximately the frequencies predicted by linear 
inviscid theory. This should be considered as a substantial confirmation of the ability 
of linear inviscid theory to predict the resonant frequencies of low-order modes. The 
observations show that our system is extraordinarily rich, exhibiting, for example, 
intermittent breakdowns. The two modes studied in detail undergo a variety of 
breakdowns, ranging from the Type A and D breakdowns that we could call violent 
collapses to long-timescale instabilities. It was shown that variations in the Ekman 
number have little influence on the Type A breakdown, and that breakdowns in 
general take longer to occur for weaker forcing. In some of the regimes reported in 
$4, notably the Type B, C, F and G breakdowns, i t  appeared as though one or two 
secondary modes were interacting with the primary. The Type C and G breakdowns 
were notable by their intermittent behaviour. 

A future paper will present the results of dyeline experiments. These later 
experiments provided further confirmation that linear inviscid theory can be used to 
predict the resonant frequencies of low-order inertia wave modes. Furthermore, some 
additional features of linear inviscid theory, in particular the oscillatory time 
dependence and the amplitude, seem initially to be in fair agreement with these 
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FIGURE 22. Distribution of breakdown types in the 0-w parameter space, near the (3,1,l)-mode 
resonance, E = 9 x lo-‘ : symbols as figure 21. Numerals below symbols indicate the number, if any, 
of multiple breakdowns (of Type G) occurring after a breakdown. Some isolated first breakdowns 
occur that are also best described as Type G. Vertical dashed lines indicate the location of low-order 
mode resonances. 

W 

experiments. However, the dyeline experiments also indicated that departures from 
linear inviscid theory occur earlier than suspected from the pearlescence visual- 
izations of the flow, and that for weak forcing away from low-order mode 
resonances, it is difficult to obtain much correspondence, even at  early times, with 
linear inviscid theory. 

5.2. Some speculations 

Some authors have associated the ‘resonant collapse ’ with a mean circulation. Gunn 
& Aldridge (1990) have made a theoretical study of the changes in the eigenfrequency 
spectrum due to a non-uniform rotation. They associated collapse with a sudden 
reduction in amplitude that would occur if a mean flow ‘Doppler-shifted’ the 
frequency away from resonance. However, it is not clear how this sort of parametric 
reduction in the amplitude of a mode corresponds to the dynamic breakdowns of 
inertia waves that have been observed by McEwan (1970), by Stergiopoulos BE 
Aldridge (1982) in earlier experiments and as reported here in $4. Furthermore, in $4 
it was noted that Type A breakdowns occur both near to (within 0.2 % of) and well 
away from (within 5 % of) the primary-mode resonant peak. These breakdowns were 
similar, both qualitatively and quantitatively, in terms of timescale to the 
breakdown. The proposed frequency shift does not account for all these observations, 
since well away from the primary-mode resonant peak, the small shift in frequency 
proposed would not correspond to the large reduction in amplitude that they 
associate with collapse. Gunn & Aldridge state that their frequency shift does not 
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account for the observed return to resonance in their experiments, which may be 
similar to the intermittency reported by McEwan (1970) and here in $4. 

McEwan (1970) could show how an azimuthal circulation would arise, due to the 
torque exerted by the sloping top lid in his experiment. He made a heuristic analysis 
with the aim of identifying the main physical processes involved in the evolution of 
the flow before collapse. Nonlinear evolution equations were derived for the variation 
of the resonant-mode amplitude and an azimuthal circulation with time, which when 
integrated gave fair agreement for the time to peak amplitude. The evolution 
equations, however, could not model the collapse itself. We cannot adopt exactly the 
same procedure in our precessing tank as there is no net couple acting on a sloping top. 
We should nevertheless expect a net circulation as derived formally by Thompson 
(1970). This is driven by nonlinear interaction in the boundary layer and is small, of 
O(r3’) in our case. Thus in our case the circulation generated by this mechanism is of 
order too small to cause a ‘resonant collapse’ as suggested by Gunn & Aldridge 
(1990). 

The intermittent behaviour is suggestive of a transfer of energy from the basic 
rotation to the oscillatory behaviour, which builds in amplitude until a Type C or G 
breakdown occurs. The defect in the basic rotation would then appear as a mean 
flow. Then there would be a period of order 100 revolutions, when we presume 
viscous effects are restoring the basic rotation to its original value before the next 
breakdown. This is a concept which is attractive in its simplicity, that is believed to 
underlie similar phenomena, for example that reported in the paper by Griffiths & 
Linden (1985) on diffusion-driven motions in a rotating fluid. The timescale observed 
for the intermittencies is consistent with that based on Ekman-layer dissipation. 
However, we still lack a rigorous theoretical explanation for the transfer of a 
sufficiently large proportion of the oscillatory energy to and from a mean flow, that 
could explain the violent collapse. 

McEwan (1971) speculated that, as with the degeneration of internal waves in a 
stratified fluid, the ‘resonant collapse’ of inertia wave modes was caused by 
nonlinear interactions of triads of waves. In  this resonant triad mechanism, the 
quadratic nonlinear terms combine two modes to force a third ; energy supplied to  a 
low-order ‘primary’ mode can flow to a pair of ‘parasitic’ secondary modes and so 
on in a cascade to  turbulence. As the wave modes in a rectilinear tank or in the ocean 
are simple Fourier modes the appropriate nonlinear evolution equations can be 
inferred a posteriori by equating those terms that satisfy the resonant triad 
condition. However, in our case the Bessel functions which make up one of the 
separated spatial eigenfunctions do not obey simple addition theorems as 
trigonometric functions do. Thus the wavenumbers in the radial direction need not 
sum to permit nonlinear interaction, and there appears to be no a priori method of 
inferring which groups of modes are important in any weakly nonlinear interaction. 
The author has made some numerical calculations that try to  map out the sets of 
modes that interact with a given primary. It is anticipated that this work will be 
reported in the future. 

5.3. Concluding remarks 

I n  1970 McEwan produced a thorough experimental paper. The two most important 
conclusions were that linear inviscid theory accurately predicts the frequencies a t  
which low-order inertia wave modes resonate, but that  this same approximation will 
ultimately fail in situations of practical interest. 

One situation of practical engineering interest, which pertains to the stability of 
spinning spacecraft containing liquid fuels, leads to Ekman numbers of order lo-* 
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and nutation angles that grow to greater than 10". From the results presented here, 
it appears that in this parameter range an assumption that the flow remains linear 
would be incorrect. In this paper, therefore, there is a confirmation of these two 
conclusions presented by McEwan 22 years ago. There is also a confirmation of his 
observation of the repeatability of the violent-collapse process. In addition, a 
detailed description has been made of some of the ways in which contained inertia 
waves can break down. The variety of phenomena described in $4 suggests that no 
single mechanism will account for all the ways in which contained inertia waves can 
break down. Some of the breakdown regimes can probably be adequately described 
by a low number of modes, interacting in a weakly nonlinear way. However, an 
elucidation of the intensely nonlinear violent collapses appears to offer us an entirely 
new theoretical and experimental challenge. 

Finally we should recall the observation (Malkus 1989) that two-dimensional 
elliptical flows can give rise to inertia wave modes which then undergo breakdowns 
that are qualitatively very similar to the violent collapses described here. This 
indicates that an understanding of the violent collapse may have a much wider 
applicability than to the simple experimental system described here. 

This work was done while the author was a graduate student at  the University of 
Cambridge, Department of Applied Mathematics and Theoretical Physics (DAMTP). 
I should like to thank my supervisor, Dr Paul F. Linden, for his continuing support 
and encouragement during this time. The work was part of a project sponsored by 
the British National Space Centre/Royal Aerospace Establishment, whose support 
is gratefully acknowledged. I should like to thank my other colleagues working on 
the project, Drs Michael E. Mclntyre, David G. H. Tan and John C. Jackson, for 
many interesting and insightful discussions. The apparatus could not have been 
constructed without the skills of DAMTP technicians. I am grateful to Dr John 
Simpson for help with photography, Dr Stuart B. Dalziel for help with micro- 
computer interfacing and to Knud Lunde, who gave the manuscript a thorough 
reading. 
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